Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 754: 109929, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367794

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma. Although treatment options have improved, a large proportion of patients show low survival rates, highlighting an urgent need for novel therapeutic strategies. The aim of this study was to investigate the efficacy of the new small-molecule compound dihydrocelastrol (DHCE), acquired through the structural modification of celastrol (CE), in the treatment of DLBCL. DHCE showed potent anti-lymphoma efficacy and synergistic effects with doxorubicin. DHCE triggered DLBCL cell apoptosis and G0/G1-phase blockade, thereby hindering angiogenesis. DHCE inhibited B-cell receptor cascade signalling and Jun B and p65 nuclear translocation, thereby suppressing pro-tumourigenic signalling. Finally, DHCE exerted lower toxicity than CE, which showed severe hepatic, renal, and reproductive toxicity in vivo. Our findings support further investigation of the clinical efficacy of DHCE against DLBCL.


Assuntos
Linfoma Difuso de Grandes Células B , Triterpenos Pentacíclicos , Fator de Transcrição AP-1 , Humanos , Fator de Transcrição AP-1/metabolismo , 60489 , Transdução de Sinais , Apoptose , Linfoma Difuso de Grandes Células B/metabolismo , Linhagem Celular Tumoral , Proliferação de Células
2.
Int Immunopharmacol ; 127: 111446, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38157697

RESUMO

Multiple myeloma (MM) is an incurable and recurrent malignancy characterized by abnormal plasma cell proliferation. There is an urgent need to develop effective drugs in MM. DCZ0825 is a small molecule compound derived from pterostilbene with direct anti-myeloma activity and indirect immune-killing effects though reversal of the immunosuppression. DCZ0825 inhibits the activity and proliferation of MM cells causing no significant toxicity to normal cells. Using flow cytometry, this study found that DCZ0825 induced caspase-dependent apoptosis in MM cells and arrested the cell cycle in the G2/M phase by down-regulating CyclinB1, CDK1 and CDC25. Moreover, DCZ0825 up-regulated IRF3 and IRF7 to increase IFN-γ, promoting M2 macrophages to transform into M1 macrophages, releasing the immunosuppression of CD4T cells and stimulated M1 macrophages and Th1 cells to secrete more INF-γ to form immune killing effect on MM cells. Treatment with DCZ0825 resulted in an increased proportion of positive regulatory cells such as CD4T, memory T cells, CD8T, and NK cells, with downregulation of the proportion of negative regulatory cells such as Treg cells and MDSCs. In conclusion, DCZ0825 is a novel compound with both antitumor and immunomodulatory activity.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Recidiva Local de Neoplasia , Macrófagos , Células Th1 , Imunomodulação
3.
Int Immunopharmacol ; 125(Pt A): 111139, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37913572

RESUMO

The most common neoplasm among adult lymphomas is diffuse large B-cell lymphoma (DLBCL), typically characterized by pain-free and progressive lymph node enlargement. Due to high heterogeneity of DLBCL, 30-40 % of patients are resistant to R-CHOP standard chemoimmunotherapy. DCZ0358 is a new compound designed and synthesized from berberine by our group and the molecular mechanism by which it inhibited DLBCL growth has attracted our widespread attention. In this study, we employed the CCK8 assay to reveal that DCZ0358 inhibited proliferation in a dependent manner of time and dosage of DLBCL cells. Moreover, flowcytometry and western blot results showed that DCZ0358 downregulated the expression of CDK4, CDK6 and CyclinD1 to block cell cycle progression in G0/G1 phase. Furthermore, DCZ0358 enhanced mitochondrial membrane potential depolarization, promoted mitochondrial permeability transport pore openness, increased cytoplastic Ca2+ levels and decreased intracellular adenosine triphosphate production, which led to mitochondrial dysfunction. In particular, DCZ0358 treatment triggered cell apoptosis and elevated intracellular reactive oxygen species (ROS) levels, which subsequently mediated JNK pathway activation. Further research indicated the pre-treatment with ROS scavenger N-acetylcysteine (NAC) and JNK inhibitor SP600125 could partially attenuate apoptosis and DNA damage triggered by DCZ0358. Most importantly, DCZ0358 exhibited synergistic anti-tumor effects when combined with etoposide, a common clinical anti-DLBCL drug, both in vitro and certainly in vivo. Above results demonstrated anti-tumor molecular mechanism of DCZ0358 in DLBCL cells and highlighted the ROS/JNK/DNA damage pathway as a potential target in therapies, which have implications for the development of more effective clinical treatments for DLBCL.


Assuntos
Berberina , Linfoma Difuso de Grandes Células B , Humanos , Apoptose , Berberina/farmacologia , Linhagem Celular Tumoral , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/patologia , Sistema de Sinalização das MAP Quinases , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
4.
J Transl Med ; 21(1): 858, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012658

RESUMO

BACKGROUND: Multiple myeloma (MM), an incurable disease owing to drug resistance, requires safe and effective therapies. Norcantharidin (NCTD), an active ingredient in traditional Chinese medicines, possesses activity against different cancers. However, its toxicity and narrow treatment window limit its clinical application. In this study, we synthesized a series of derivatives of NCTD to address this. Among these compounds, DCZ5417 demonstrated the greatest anti-MM effect and fewest side effects. Its anti-myeloma effects and  the mechanism were further tested. METHODS: Molecular docking, pull-down, surface plasmon resonance-binding, cellular thermal shift, and ATPase assays were used to study the targets of DCZ5417. Bioinformatic, genetic, and pharmacological approaches were used to elucidate the mechanisms associated with DCZ5417 activity. RESULTS: We confirmed a highly potent interaction between DCZ5417 and TRIP13. DCZ5417 inhibited the ATPase activity of TRIP13, and its anti-MM activity was found to depend on TRIP13. A mechanistic study verified that DCZ5417 suppressed cell proliferation by targeting TRIP13, disturbing the TRIP13/YWHAE complex and inhibiting the ERK/MAPK signaling axis. DCZ5417 also showed a combined lethal effect with traditional anti-MM drugs. Furthermore, the tumor growth-inhibitory effect of DCZ5417 was demonstrated using in vivo tumor xenograft models. CONCLUSIONS: DCZ5417 suppresses MM progression in vitro, in vivo, and in primary cells from drug-resistant patients, affecting cell proliferation by targeting TRIP13, destroying the TRIP13/YWHAE complex, and inhibiting ERK/MAPK signaling. These results imply a new and effective therapeutic strategy for MM treatment.


Assuntos
Mieloma Múltiplo , Humanos , Proteínas 14-3-3/metabolismo , Apoptose , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Simulação de Acoplamento Molecular , Mieloma Múltiplo/metabolismo , Transdução de Sinais , Animais
5.
Arch Biochem Biophys ; 747: 109771, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37776936

RESUMO

Despite significant improvement in the prognosis of multiple myeloma (MM), the disease remains incurable; thus, more effective therapies are required. Ribonucleoside-diphosphate reductase subunit M2 (RRM2) is significantly associated with drug resistance, rapid relapse, and poor prognosis. Previously, we found that 4-hydroxysalicylanilide (osalmid), a specific inhibitor of RRM2, exhibits anti-MM activity in vitro, in vivo, and in human patients; however, the mechanism remains unclear. Osalmid inhibits the translocation of RRM2 to the nucleus and stimulates autophagosome synthesis but inhibits subsequent autophagosome-lysosome fusion. We confirm that RRM2 binds to receptor-interacting protein kinase 3 (RIPK3) and reduces RIPK3, inhibiting autophagosome-lysosome fusion. Interestingly, the combination of osalmid and bafilomycin A1 (an autophagy inhibitor) depletes RIPK3 and aggravates p62 and autophagosome accumulation, leading to autophagic cell death. Combination therapy demonstrates synergistic cytotoxicity both in vitro and in vivo. Therefore, we propose that combining osalmid and bafilomycin A1(BafA1) may have clinical benefits against MM.

7.
Polymers (Basel) ; 14(15)2022 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-35893962

RESUMO

Intimate coupling photocatalysis and biodegradation treatment technology is an emerging technology in the treatment of refractory organic matter, and the carrier plays an important role in this technology. In this paper, sugarcane cellulose was used as the basic skeleton, absorbent cotton was used as a reinforcing agent, anhydrous sodium sulfate was used as a pore-forming agent to prepare a cellulose porous support with good photocatalytic performance, and nano-TiO2 was loaded onto it by a low-temperature bonding method. The results showed that the optimal preparation conditions of cellulose carriers were: cellulose mass fraction 1.0%; absorbent cotton 0.6 g; and Na2SO4 60 g. The SEM, EDS and XPS characterization further indicated that the nano-TiO2 was uniformly loaded onto the cellulose support. The degradation experiments of Rhodamine B showed that the nano-TiO2-loaded composite supports had good photocatalytic performance. The degradation rate of 1,2,4-trichlorobenzene was more than 92% after 6 cycles, and the experiment of adhering a large number of microorganisms on the carriers before and after the reaction showed that the cellulose-based carriers obtained the required photocatalytic performance and stability, which is a good cellulose porous carrier.

8.
J Environ Manage ; 318: 115595, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35772268

RESUMO

Intimate coupling of photocatalysis and biodegradation (ICPB) is considered a promising approach for the degradation of recalcitrant organic compounds. In this work, using Trichoderma with benzene degradation ability coupled with activated sludge as a biological source and sugarcane bagasse cellulose composite as a carrier, the ICPB system showed excellent degradation and mineralization of trichlorobenzene under visible light induction. The biofilm inside the ICPB carrier can degrade and mineralize the photocatalytic products. ICPB increased the degradation efficiency of 1,2,3-TCB and 1,3,5-TCB by 12.43% and 4.67%, respectively, compared to photocatalysis alone. The biofilms inside the ICPB carriers can mineralize photocatalytic products, which increases the mineralization efficiency by 18.74%. According to the analysis of intermediates, the degradation of 1,2,3-TCB in this coupled system involved stepwise dechlorination and ring opening. The biofilm in ICPB carrier evolved to be enriched in Cutaneotrichosporon, Trichoderma, Apiotrichum, Zoogloea, Dechloromonas, Flavihumibacter and Cupriavidus, which are known for biodegradable aromatic hydrocarbon and halogenate. Novel microbial seeds supplemented with Trichoderma-based ICPB seem to provide a new potential strategy for effective degradation and mineralization of TCB.


Assuntos
Celulose , Saccharum , Bactérias/metabolismo , Biodegradação Ambiental , Celulose/metabolismo , Clorobenzenos , Titânio
9.
J Environ Sci (China) ; 122: 50-61, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35717090

RESUMO

The widespread contamination of water systems with antibiotics and heavy metals has gained much attention. Intimately coupled visible -light-responsive photocatalysis and biodegradation (ICPB) provides a novel approach for removing such mixed pollutants. In ICPB, the photocatalysis products are biodegraded by a protected biofilm, leading to the mineralization of refractory organics. In the present study, the ICPB approach exhibited excellent photocatalytic activity and biodegradation, providing up to ∼1.27 times the degradation rate of sulfamethoxazole (SMX) and 1.16 times the Cr(VI) reduction rate of visible-light-induced photocatalysis . Three-dimensional fluorescence analysis demonstrated the synergistic ICPB effects of photocatalysis and biodegradation for removing SMX and reducing Cr(VI). In addition, the toxicity of the SMX intermediates and Cr(VI) in the ICPB process significantly decreased. The use of MoS2/CoS2 photocatalyst accelerated the separation of electrons and holes, with•O2- and h+ attacking SMX and e- reducing Cr(VI), providing an effective means for enhancing the removal and mineralization of these mixed pollutants via the ICPB technique. The microbial community results demonstrate that bacteria that are conducive to pollutant removal are were enriched by the acclimation and ICPB operation processes, thus significantly improving the performance of the ICPB system.


Assuntos
Poluentes Ambientais , Sulfametoxazol , Biofilmes , Catálise , Cromo , Titânio
10.
J Biomed Sci ; 29(1): 32, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35546402

RESUMO

BACKGROUND: Aberrant DNA repair pathways contribute to malignant transformation or disease progression and the acquisition of drug resistance in multiple myeloma (MM); therefore, these pathways could be therapeutically exploited. Ribonucleotide reductase (RNR) is the rate-limiting enzyme for the biosynthesis of deoxyribonucleotides (dNTPs), which are essential for DNA replication and DNA damage repair. In this study, we explored the efficacy of the novel RNR inhibitor, 4-hydroxysalicylanilide (HDS), in myeloma cells and xenograft model. In addition, we assessed the clinical activity and safety of HDS in patients with MM. METHODS: We applied bioinformatic, genetic, and pharmacological approaches to demonstrate that HDS was an RNR inhibitor that directly bound to RNR subunit M2 (RRM2). The activity of HDS alone or in synergy with standard treatments was evaluated in vitro and in vivo. We also initiated a phase I clinical trial of single-agent HDS in MM patients (ClinicalTrials.gov: NCT03670173) to assess safety and efficacy. RESULTS: HDS inhibited the activity of RNR by directly targeting RRM2. HDS decreased the RNR-mediated dNTP synthesis and concomitantly inhibited DNA damage repair, resulting in the accumulation of endogenous unrepaired DNA double-strand breaks (DSBs), thus inhibiting MM cell proliferation and inducing apoptosis. Moreover, HDS overcame the protective effects of IL-6, IGF-1 and bone marrow stromal cells (BMSCs) on MM cells. HDS prolonged survival in a MM xenograft model and induced synergistic anti-myeloma activity in combination with melphalan and bortezomib. HDS also showed a favorable safety profile and demonstrated clinical activity against MM. CONCLUSIONS: Our study provides a rationale for the clinical evaluation of HDS as an anti-myeloma agent, either alone or in combination with standard treatments for MM. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03670173, Registered 12 September 2018.


Assuntos
Mieloma Múltiplo , Ribonucleotídeo Redutases , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Reparo do DNA , Replicação do DNA , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Ribonucleotídeo Redutases/genética , Ribonucleotídeo Redutases/metabolismo
11.
J Environ Manage ; 302(Pt B): 114111, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34800771

RESUMO

In this study, the visible-light-induced intimately coupled photocatalysis and biodegradation (ICPB) technology was fabricated using the TiO2/bagasse cellulose composite as the carrier and Phanerochaete mixed activated sludge as the biological source. The ICPB degradation effect of elemental chlorine free (ECF) bleaching wastewater was evaluated via the response surface design. Then, the wastewater was characterized, including absorbable organic halogen (AOX), dissolved organic carbon (DOC), chemical oxygen demand (COD), chroma, pH, suspended solids, and the organic compound changes in wastewater were analyzed by fourier transform infrared spectroscopy (FT-IR). Under the optimal conditions of pH 7, carrier filling rate of 5%, aeration rate of 2 L/min, and reaction time of 7 h, the degradation efficiencies of AOX, COD, and DOC were 95%, 91%, and 82%, respectively. The X-ray photoelectron spectroscopy (XPS) results of the ICPB carrier after the reaction were almost identical to those before the reaction. The biomass and its activity on the ICPB system were analyzed by the dominant bacteria during degradation (Curaneotrichosporon, Paenibacillus, Cellulonas, Phanerochaete, Dechlorobacter, Rhodotorula, Sphingobacterium, and Ruminiclostridium), which had a good degradation effect on wastewater. This study affords a novel method for the degradation of ECF bleaching wastewater and a new idea for ICPB technology optimization.


Assuntos
Matéria Orgânica Dissolvida , Águas Residuárias , Biodegradação Ambiental , Espectroscopia de Infravermelho com Transformada de Fourier , Titânio
12.
Am J Transl Res ; 13(10): 11439-11449, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34786070

RESUMO

Multiple myeloma (MM) is a malignant disease characterized by abnormal proliferation of clonal plasma cells. Based on the organic drug osalmid, the novel small molecule compound DCZ0858 was designed and synthesized for treating MM. DCZ0858 inhibited the proliferation and activity of MM cells and reduced colony formation. It also promoted the apoptosis of primary cells from patients with MM and cultured MM cell lines but had little effect on peripheral blood mononuclear cells in healthy people. Simultaneously, DCZ0858 activated caspase family proteins, blocked MM cells in G0/G1 phase, and reduced the expression of related cyclins CDK4/6 and CyclinD1. Moreover, DCZ0858 overcame the protective effect of the bone marrow microenvironment and effectively inhibited the activity of mTORC1 and mTORC2. Further, xenograft model experiments in mice showed that DCZ0858 significantly inhibited the proliferation and growth of tumors, with low drug toxicity. These results indicate that DCZ0858 has marked anti-MM activity and little effect on normal cells and tissues, making it a new candidate clinical drug for the treatment of MM.

13.
Cancer Cell Int ; 21(1): 285, 2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34053438

RESUMO

BACKGROUND: Multiple myeloma (MM) is a highly aggressive and incurable clonal plasma cell disease with a high rate of recurrence. Thus, the development of new therapies is urgently needed. DCZ0805, a novel compound synthesized from osalmide and pterostilbene, has few observed side effects. In the current study, we intend to investigate the therapeutic effects of DCZ0805 in MM cells and elucidate the molecular mechanism underlying its anti-myeloma activity. METHODS: We used the Cell Counting Kit-8 assay, immunofluorescence staining, cell cycle assessment, apoptosis assay, western blot analysis, dual-luciferase reporter assay and a tumor xenograft mouse model to investigate the effect of DCZ0805 treatment both in vivo and in vitro. RESULTS: The results showed that DCZ0805 treatment arrested the cell at the G0/G1 phase and suppressed MM cells survival by inducing apoptosis via extrinsic and intrinsic pathways. DCZ0805 suppressed the NF-κB signaling pathway activation, which may have contributed to the inhibition of cell proliferation. DCZ0805 treatment remarkably reduced the tumor burden in the immunocompromised xenograft mouse model, with no obvious toxicity observed. CONCLUSION: The findings of this study indicate that DCZ0805 can serve as a novel therapeutic agent for the treatment of MM.

14.
J Cancer ; 11(16): 4907-4916, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32626538

RESUMO

Multiple myeloma (MM) is a highly invasive and incurable plasma cell malignant disease with frequent recurrence. DCZ0801 is a natural compound synthesized from osalmide and pterostilbene and has few adverse effects. Here, we aimed to observe the therapeutic effects of DCZ0801 on myeloma cells and clarify the specific molecular mechanism underlying its anti-tumor activity. The Cell Counting Kit-8 assay, apoptosis detection, cell cycle analysis, western blot analysis, and tumor xenograft models were used to determine the effect of DCZ0801 treatment both in vivo and in vitro. We revealed that DCZ0801 treatment suppressed MM cell survival by inducing apoptosis and blocking the cell cycle at S phase. Deranged glycolysis and downregulated Akt/mTOR pathway may also be responsible for cell proliferation inhibition. Moreover, DCZ0801 treatment could remarkably reduce the tumor size in the xenograft mouse model. Therefore these findings indicate that DCZ0801 can be used as a novel therapeutic drug for patients suffering from multiple myeloma.

15.
J Exp Clin Cancer Res ; 39(1): 105, 2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32517809

RESUMO

BACKGROUND: DCZ3301, a novel aryl-guanidino compound previously reported by our group, exerts cytotoxic effects against multiple myeloma (MM), diffused large B cell lymphoma (DLBCL), and T-cell leukemia/lymphoma. However, the underlying mechanism of its action remains unknown. METHODS: We generated bortezomib (BTZ)-resistant cell lines, treated them with various concentrations of DCZ3301 over varying periods, and studied its effect on colony formation, cell proliferation, apoptosis, cell cycle, DNA synthesis, and DNA damage response. We validated our results using in vitro and in vivo experimental models. RESULTS: DCZ3301 overcame bortezomib (BTZ) resistance through regulation of the G2/M checkpoint in multiple myeloma (MM) in vitro and in vivo. Furthermore, treatment of BTZ-resistant cells with DCZ3301 restored their drug sensitivity. DCZ3301 induced M phase cell cycle arrest in MM mainly via inhibiting DNA repair and enhancing DNA damage. Moreover, DCZ3301 promoted the phosphorylation of ATM, ATR, and their downstream proteins, and these responses were blocked by the ATM specific inhibitor KU55933. CONCLUSIONS: Our study provides a proof-of-concept that warrants the clinical evaluation of DCZ3301 as a novel anti-tumor compound against BTZ resistance in MM.


Assuntos
Amidas/farmacologia , Bortezomib/farmacologia , Dano ao DNA , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Mitose , Mieloma Múltiplo/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Piridinas/farmacologia , Animais , Antineoplásicos/farmacologia , Apoptose , Ciclo Celular , Proliferação de Células , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Signal Transduct Target Ther ; 5(1): 31, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32296013

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is a highly heterogeneous malignant tumor characterized by diffuse growth. DCZ0858 is a novel small molecule with excellent antitumor effects in DLBCL. This study explored in depth the inhibitory effect of DCZ0858 on DLBCL cell lines. Cell Counting Kit-8 (CCK-8) and plate colony formation assays were used to evaluate cell proliferation levels. Flow cytometry was employed to analyze apoptosis and the cell cycle, and western blotting was used to quantify the expression of cell cycle regulators. The results indicated that DCZ0858 inhibited cell growth in a concentration-dependent and time-dependent manner while inducing no significant toxicity in normal cells. Moreover, DCZ0858 initiated cell apoptosis via both internal and external apoptotic pathways. DCZ0858 also induced cell cycle arrest in the G0/G1 phase, thereby controlling cell proliferation. Further investigation of the molecular mechanism showed that the JAK2/STAT3 pathway was involved in the DCZ0858-mediated antitumor effects and that JAK2 was the key target for DCZ0858 treatment. Knockdown of JAK2 partly weakened the DCZ0858-mediated antitumor effect in DLBCL cells, while JAK2 overexpression strengthened the effect of DCZ0858 in DLBCL cells. Moreover, a similar antitumor effect was observed for DCZ0858 and the JAK2 inhibitor ruxolitinib, and combining the two could significantly enhance cancer-suppressive signaling. Tumor xenograft models showed that DCZ0858 inhibited tumor growth in vivo and had low toxicity in important organs, findings that were consistent with the in vitro data. In summary, DCZ0858 is a promising drug for the treatment of DLBCL.


Assuntos
Janus Quinase 2/genética , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Fator de Transcrição STAT3/genética , Silicones/farmacologia , Apoptose/efeitos dos fármacos , Contagem de Células , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Transdução de Sinais/efeitos dos fármacos
17.
Cancer Lett ; 478: 45-55, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32160976

RESUMO

Multiple myeloma (MM) is an incurable hematological malignancy, for which novel effective therapies are urgently needed. We synthesized a novel phosphoramide compound, DCZ0847, showing a potent anti-myeloma activity both in vitro and in vivo. DCZ0847 showed high cytotoxicity towards primary MM cells but had no effect on normal cells and was well tolerated in vivo. The anti-myeloma activity of DCZ0847 was associated with inhibition of cell proliferation; promotion of cell apoptosis via mitochondrial transmembrane potential collapse and caspase-mediated extrinsic or intrinsic apoptotic pathways; and the induction of G2/M phase arrest via downregulation of CDC25C, CDK1, and cyclin B1. In particular, DCZ0847 induced DNA damage and triggered a DNA-damage response by enhancing the levels of γ-H2A.X, phosphorylated (p)-ATM, p-ATR, p-Chk1, and p-Chk2. Additionally, DCZ0847 was able to overcome the bone marrow stromal cells-induced proliferation of MM cells and blocked JAK2/STAT3 signaling. Importantly, DCZ0847 acted synergistically with bortezomib, with the combination exerting greater cytotoxic effects in vitro and in vivo. Together, our results indicate that DCZ0847, alone or in combination with bortezomib, may represent a potential new therapy for patients with MM.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Bortezomib/administração & dosagem , Mieloma Múltiplo/tratamento farmacológico , Fosforamidas/administração & dosagem , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Bortezomib/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mieloma Múltiplo/metabolismo , Fosforamidas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Life Sci ; 243: 117249, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31926247

RESUMO

AIMS: Diffuse large B-cell lymphoma (DLBCL) is one of the most aggressive lymphoid malignancies, which remains incurable, thus warranting the development of new therapies. Our previous study determined that rafoxanide is very effective in treating multiple myeloma (MM). In the present study, we tried to evaluate the effects of rafoxanide on DLBCL, as well as the potential underlying molecular mechanisms. MAIN METHODS: We used CCK-8 assay and flow cytometry to assess cell viability and apoptosis. The proteins and pathways associated with apoptosis and proliferation were evaluated through western blot, and xenograft mice were used as the experimental animal model. We also used the TUNEL assay and immunofluorescence for further analyses. KEY FINDINGS: Treatment with different doses of rafoxanide significantly inhibited cell viability and apoptosis. Additionally, the compound induced cell cycle arrest, reduced mitochondrial membrane potential (Δψm), and stimulated reactive oxygen species (ROS) generation without the influence of normal peripheral blood monocytes (PBMCs). As expected, rafoxanide played a role in regulating these proteins and the PTEN/PI3K/AKT and JNK/c-Jun pathways. Furthermore, immunofluorescence and western blot results showed that rafoxanide upregulated H2AX phosphorylation and then inhibited DNA repair in DLBCL. In the xenograft mouse model, tumor volumes were reduced after intraperitoneal injection with rafoxanide. We also observed that TUNEL positive cells were remarkably increased in rafoxanide-treated tumor tissues. SIGNIFICANCE: These results collectively provide a novel choice to regular treatment for DLBCL patients with poor prognosis.


Assuntos
Antineoplásicos/uso terapêutico , Linfoma Difuso de Grandes Células B/tratamento farmacológico , MAP Quinase Quinase 4/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Rafoxanida/uso terapêutico , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Dano ao DNA , Humanos , Linfoma Difuso de Grandes Células B/enzimologia , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Masculino , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Expert Rev Clin Pharmacol ; 12(6): 547-554, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31059310

RESUMO

Introduction: Rheumatoid arthritis (RA) is a chronic progressive autoimmune disease characterized by synovitis as well as symmetric and destructive arthropathy. Although several disease modified antirheumatic-drugs (DMARDs) have widely used in clinical practice, certain patients are nonresponsive to or cannot take such medications due to adverse reactions. It is evident that Janus kinase (JAK) inhibitors have the potential to provide a significant breakthrough in the treatment of RA. These potent, orally administered, JAK inhibitors simplify the treatment options for patients. Areas covered: We discuss the pharmacodynamics, pharmacokinetics, efficacy, and safety of peficitinib for the treatment of RA. Expert opinion: Peficitinib is a novel JAK3 inhibitor potently inhibiting JAK3 enzymatic activity and JAK1/3-mediated cell proliferation. Its selectivity for JAK family kinases is similar to that of tofacitinib, but slightly less potent for JAK2. It is currently being evaluated by the FDA to treat adult patients with moderately to severely active RA who show inadequate response to or are intolerant of methotrexate. It can be used either as monotherapy or combination therapy with methotrexate, or other DMARDs. However, we think that more cautious consideration and measurement for adverse events are needed, after considering the safety results of ongoing clinical studies of peficitinib.


Assuntos
Adamantano/análogos & derivados , Artrite Reumatoide/tratamento farmacológico , Inibidores de Janus Quinases/uso terapêutico , Niacinamida/análogos & derivados , Adamantano/efeitos adversos , Adamantano/farmacologia , Adamantano/uso terapêutico , Adulto , Antirreumáticos/efeitos adversos , Antirreumáticos/farmacologia , Antirreumáticos/uso terapêutico , Artrite Reumatoide/enzimologia , Proliferação de Células/efeitos dos fármacos , Humanos , Janus Quinase 3/antagonistas & inibidores , Inibidores de Janus Quinases/efeitos adversos , Inibidores de Janus Quinases/farmacologia , Metotrexato/administração & dosagem , Metotrexato/efeitos adversos , Niacinamida/efeitos adversos , Niacinamida/farmacologia , Niacinamida/uso terapêutico , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Pirróis/farmacologia , Pirróis/uso terapêutico
20.
Acta Biochim Biophys Sin (Shanghai) ; 51(5): 517-523, 2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-30947332

RESUMO

Multiple myeloma (MM) is a refractory malignant hematological malignancy, and many therapeutic strategies have been developed to cure patients with MM. DCZ0801 is a compound that consists of oxophenamide and pterostilbene. The role of these compounds in hematological cancers such as MM has yet to be studied. In this study, we explored the potential mechanism of DCZ0801 action, its anti-tumor activity both in vitro and in vivo on MM. This study was carried out via cell cycle proliferation assay, apoptotic analysis, western blot analysis, and examination of xenotransplantation model of tumors. The in vitro studies revealed that DCZ0801 could inhibit cell proliferation and induce apoptosis by regulating both caspase-dependent and mitogen-activated protein kinase signaling pathways, inducing S-phase arrest of the cell cycle related to downregulation of CDK2, cyclin-A2, and CDC25A protein expression. The in vivo studies showed that DCZ0801 could significantly reduce the size of the tumors in nude mice. Our results demonstrated that DCZ0801 may emerge as the new therapeutic option for the patient with MM.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Mieloma Múltiplo/tratamento farmacológico , Estilbenos/farmacologia , Animais , Antineoplásicos/química , Ciclo Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Camundongos Nus , Estrutura Molecular , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Estilbenos/química , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...